博客
关于我
【电信学】【2017.04】下一代无线通信的低成本天线与系统设计
阅读量:209 次
发布时间:2019-02-28

本文共 3307 字,大约阅读时间需要 11 分钟。

本文为英国格拉斯哥大学(作者:Monageng Kgwadi)的博士论文,共146页。

在这里插入图片描述

本文研究低成本的天线和通信系统,以支持下一代无线通信和网络(5G)和/或物联网(IoT)中日益增长的带宽需求。本文工作被分成三个不同的领域,都旨在实现下一代网络(5G)和物联网的低成本解决方案。

研究的第一部分涉及在可再生、轻质、柔性和低成本的衬底上使用热转移印刷(TTP)技术实现高达10GHz天线和射频(RF)导波结构的低成本制造。电子器件的热转移印刷方法以直流至10GHz为特征,以已有印刷电子器件的喷墨印刷技术作为性能基准。TTP达到了与本研究中使用的喷墨打印射频识别(RFID)天线类似的或更好的读取范围。通过生产定制天线和/或快速原型电子设计,使用现成的组件来构建频率捷变天线以及用于低功率短距离通信的超宽带天线(UWB),TTP方法在物联网中的应用证明了其制造速度和低成本优势。

第二部分涉及用于毫米波通信的谐振隧穿二极管(RTD)振荡器集成的多端口驱动(MPD)槽环天线的设计和优化。优化的结构设计采用空气侧辐射而不是笨重透镜,实现了10.8dBi的指向性增益。具有背衬接地面的槽环概念被应用于制造5GHz工作的天线,实验验证了该设计达到预期的性能。

第三部分是调制RTD振荡器的实验研究,确定并改进可实现的调制带宽以满足5G的要求。使用喇叭天线、准光学肖特基势垒二极管检测器和一些离线信号处理的组合,设计了28 - 40GHz和240GHz的无线收发系统。对于28 -40GHz和220 - 300GHz振荡器,振荡器的调制带宽分别受限于300Mbps和16Mbps,这是因为振荡器被优化用于高功率输出而不是高调制速率。通过改变优化目标,可以提高这些振荡器的调制数据速率,以满足5G数据的传输目标。

This work presents a study of low-costantennas and communication systems to support the burgeoning demand forbandwidth in the next generation wireless communications and networks (5G) and/or Internet of Things (IoT). Thework was divided into three different fields all aimed at low-cost solutions ofenabling next generation networks (5G)and IoT. The first part of the study involves study of low-cost fabrication ofantennas and radio frequency (RF) guided wave structures up to 10 GHz using thethermal transfer printing (TTP) technique on renewable, light weight, flexibleand low-cost substrates. The thermal transfer printing method for electronicswas characterised from DC to 10 GHz and benchmarked for performance againstinkjet printing technique which is an established technique for printedelectronics. TTP achieved similar or better read range to inkjet printed radiofrequency identification (RFID) antennas that were used in this study.Applications of the TTP method in IoT taking advantage of its speed and lowcost were demonstrated by; producing on-demand antennas and/or rapidprototyping electronic designs, using off the shelf components to build afrequency agile antenna, and an ultra wideband antenna (UWB) for low powershort range communications. The second part involves design and optimisation ofa multi-port driven (MPD) slot-ring antenna for purposes of integration withresonant tunnelling diode (RTD) oscillators for millimetre-wave communications.The optimised structure managed airside radiation without the use of bulkylenses and achieved directivity of 10.8 dBi. The concept of the slot-ring witha backing ground plane was experimentally verified by a fabricated antenna for5 GHz operation showing the expected performance. The third part is anexperimental study of modulating RTD oscillators to determine and improveachievable modulation bandwidth to meet 5Gdemands. Wireless transceiver systems at 28-40 GHz and 240 GHz were build usingcombinations of horn antennas, quasi-optical Schottky barrier diode detectorsand some off-line signal processing. The modulation bandwidth of theoscillators were found to be limited to i 300 Mbps and 16 Mbps for the 28-40GHz oscillators and 220-300 GHz oscillators respectively due to oscillatorsbeing optimised for high power output instead of high modulation rates.Recommendations are made to improve the modulation datarate of theseoscillators in order to meet the 5Gdatarate targets.

1 引言

2 项目背景

3 研究方法

4 TTP特性与性能评估

5 物联网中的TTP应用

6 集成的槽环MPD天线

7 RTD无线通信系统

8 结论与未来工作展望

下载英文原文地址:

更多精彩文章请关注微信号:在这里插入图片描述

你可能感兴趣的文章
Nginx配置实例-负载均衡实例:平均访问多台服务器
查看>>
Nginx配置文件nginx.conf中文详解(总结)
查看>>
nginx配置文件nginx.conf超详细讲解
查看>>
Nginx配置自带的stub状态实现活动监控指标
查看>>
Nginx配置详解
查看>>
nginx配置详解
查看>>
nginx配置详解、端口重定向和504
查看>>
nginx配置负载均衡
查看>>
Nginx配置负载均衡到后台网关集群
查看>>
Nginx配置限流,技能拉满!
查看>>
Nginx配置静态代理/静态资源映射时root与alias的区别,带前缀映射用alias
查看>>
Nginx面试三连问:Nginx如何工作?负载均衡策略有哪些?如何限流?
查看>>
Nginx(2):Nginx配置server节点
查看>>
nginx:/usr/src/fastdfs-nginx-module/src/common.c:21:25:致命错误:fdfs_define.h:没有那个文件或目录 #include
查看>>
Nginx:NginxConfig可视化配置工具安装
查看>>
Nginx:现代Web服务器的瑞士军刀 | 文章末尾送典藏书籍
查看>>
ngModelController
查看>>
ngrok | 内网穿透,支持 HTTPS、国内访问、静态域名
查看>>
ngrok内网穿透可以实现资源共享吗?快解析更加简洁
查看>>
ngrok内网穿透可以实现资源共享吗?快解析更加简洁
查看>>